Interoperability issue is a significant problem in Building Information Modeling (BIM). Object type, as a kind of critical semantic information needed in multiple BIM applications like scan-to-BIM and code compliance checking, also suffers when exchanging BIM data or creating models using software of other domains. It can be supplemented using deep learning. Current deep learning methods mainly learn from the shape information of BIM objects for classification, leaving relational information inherent in the BIM context unused. To address this issue, we introduce a two-branch geometric-relational deep learning framework. It boosts previous geometric classification methods with relational information. We also present a BIM object dataset IFCNet++, which contains both geometric and relational information about the objects. Experiments show that our framework can be flexibly adapted to different geometric methods. And relational features do act as a bonus to general geometric learning methods, obviously improving their classification performance, thus reducing the manual labor of checking models and improving the practical value of enriched BIM models.
translated by 谷歌翻译
近年来,深度学习的时间序列增加了。对于时间序列的异常检测方案,例如金融,物联网,数据中心操作等,时间序列通常会根据各种外部因素显示非常灵活的基线。异常通过躺在远离基线的情况下揭示自己。但是,由于一些挑战,包括基线转换,缺乏标签,噪声干扰,流数据中的实时检测,可解释性等。从时间序列,即深基线网络(DBLN)。通过使用此深层网络,我们可以轻松地定位基线位置,然后提供可靠且可解释的异常检测结果。对合成和公共现实世界数据集的经验评估表明,我们纯粹的无监督算法与最新方法相比,实现了卓越的性能,并且具有良好的实际应用。
translated by 谷歌翻译
对具有无限宽度的神经网络的研究对于更好地理解实际应用中的神经网络很重要。在这项工作中,我们得出了深,无限宽度的Maxout网络和高斯过程(GP)的等效性,并用组成结构表征Maxout内核。此外,我们建立了深厚的Maxout网络内核与深神经网络内核之间的联系。我们还提供了有效的数值实现,可以适应任何麦克斯特等级。数值结果表明,与有限宽度的对应物和深神经网络内核相比,基于深层Maxout网络内核进行贝叶斯推论可能会导致竞争成果。这使我们启发了麦克斯的激活也可以纳入其他无限宽度神经网络结构,例如卷积神经网络(CNN)。
translated by 谷歌翻译
在许多计算机视觉任务(包括图像识别和对象检测)中,成功地使用了变压器结构成功使用的自我发挥机制。尽管激增,但使用变压器来立体声匹配问题仍然相对尚未探索。在本文中,我们全面研究了变压器在立体声匹配的问题上的使用,尤其是对于腹腔镜视频,并提出了一个新的混合型直立立体声匹配框架(Hybridstereonet),将CNN的最佳和变压器结合在统一的设计中。具体而言,我们研究了几种方法,通过分析设计的损失格局和内域/跨域准确性,将变压器引入体积立体声匹配管道。我们的分析表明,在使用CNN进行成本聚合的同时,使用变压器进行功能表示学习,将导致比其他选项更快地收敛,更高的准确性和更好的概括。我们在SceneFlow上进行的广泛实验,Scread2019和DVPN数据集证明了Hybridstereonet的出色性能。
translated by 谷歌翻译
检测到分布(OOD)样本对于在现实世界中的分类器的安全部署至关重要。但是,已知深层神经网络对异常数据过于自信。现有作品直接设计得分功能,通过挖掘分别分类器(ID)和OOD的不一致性。在本文中,我们基于以下假设,即对ID数据进行训练的自动编码器无法重建OOD和ID,我们进一步补充了这种不一致性。我们提出了一种新颖的方法,读取(重建误差聚合检测器),以统一分类器和自动编码器的不一致。具体而言,原始像素的重建误差转换为分类器的潜在空间。我们表明,转换后的重建误差桥接了语义差距,并从原始的传承了检测性能。此外,我们提出了一种调整策略,以根据OOD数据的细粒度表征来减轻自动编码器的过度自信问题。在两种情况下,我们分别提出了方法的两个变体,即仅基于预先训练的分类器和读取 - 读取器(欧几里得距离),即读取MD(Mahalanobis距离),该分类器重新训练分类器。我们的方法不需要访问测试时间数据以进行微调超参数。最后,我们通过与最先进的OOD检测算法进行了广泛的比较来证明所提出的方法的有效性。在CIFAR-10预先训练的WideresNet上,我们的方法将平均FPR@95TPR降低了9.8%,而不是先前的最新ART。
translated by 谷歌翻译
用于预培训语言模型的自我监督学习的核心包括预训练任务设计以及适当的数据增强。语言模型中的大多数数据增强都是独立于上下文的。最近在电子中提出了一个开创性的增强,并通过引入辅助生成网络(发电机)来实现最先进的性能,以产生用于培训主要辨别网络(鉴别者)的上下文化数据增强。然而,这种设计引入了发电机的额外计算成本,并且需要调整发电机和鉴别器之间的相对能力。在本文中,我们提出了一种自增强策略(SAS),其中单个网络用于审视以后的时期的培训常规预训练和上下文化数据增强。基本上,该策略消除了单独的发电机,并使用单个网络共同执行具有MLM(屏蔽语言建模)和RTD(替换令牌检测)头的两个预训练任务。它避免了寻找适当大小的发电机的挑战,这对于在电子中证明的性能至关重要,以及其随后的变体模型至关重要。此外,SAS是一项常规策略,可以与最近或将来的许多新技术无缝地结合,例如杜伯塔省的解除关注机制。我们的实验表明,SAS能够在具有相似或更少的计算成本中优于胶水任务中的电磁和其他最先进的模型。
translated by 谷歌翻译
Panoptic Part Segmentation (PPS) unifies panoptic segmentation and part segmentation into one task. Previous works utilize separated approaches to handle thing, stuff, and part predictions without shared computation and task association. We aim to unify these tasks at the architectural level, designing the first end-to-end unified framework named Panoptic-PartFormer. Moreover, we find the previous metric PartPQ biases to PQ. To handle both issues, we make the following contributions: Firstly, we design a meta-architecture that decouples part feature and things/stuff feature, respectively. We model things, stuff, and parts as object queries and directly learn to optimize all three forms of prediction as a unified mask prediction and classification problem. We term our model as Panoptic-PartFormer. Secondly, we propose a new metric Part-Whole Quality (PWQ) to better measure such task from both pixel-region and part-whole perspectives. It can also decouple the error for part segmentation and panoptic segmentation. Thirdly, inspired by Mask2Former, based on our meta-architecture, we propose Panoptic-PartFormer++ and design a new part-whole cross attention scheme to further boost part segmentation qualities. We design a new part-whole interaction method using masked cross attention. Finally, the extensive ablation studies and analysis demonstrate the effectiveness of both Panoptic-PartFormer and Panoptic-PartFormer++. Compared with previous Panoptic-PartFormer, our Panoptic-PartFormer++ achieves 2% PartPQ and 3% PWQ improvements on the Cityscapes PPS dataset and 5% PartPQ on the Pascal Context PPS dataset. On both datasets, Panoptic-PartFormer++ achieves new state-of-the-art results with a significant cost drop of 70% on GFlops and 50% on parameters. Our models can serve as a strong baseline and aid future research in PPS. Code will be available.
translated by 谷歌翻译
Rankings are widely collected in various real-life scenarios, leading to the leakage of personal information such as users' preferences on videos or news. To protect rankings, existing works mainly develop privacy protection on a single ranking within a set of ranking or pairwise comparisons of a ranking under the $\epsilon$-differential privacy. This paper proposes a novel notion called $\epsilon$-ranking differential privacy for protecting ranks. We establish the connection between the Mallows model (Mallows, 1957) and the proposed $\epsilon$-ranking differential privacy. This allows us to develop a multistage ranking algorithm to generate synthetic rankings while satisfying the developed $\epsilon$-ranking differential privacy. Theoretical results regarding the utility of synthetic rankings in the downstream tasks, including the inference attack and the personalized ranking tasks, are established. For the inference attack, we quantify how $\epsilon$ affects the estimation of the true ranking based on synthetic rankings. For the personalized ranking task, we consider varying privacy preferences among users and quantify how their privacy preferences affect the consistency in estimating the optimal ranking function. Extensive numerical experiments are carried out to verify the theoretical results and demonstrate the effectiveness of the proposed synthetic ranking algorithm.
translated by 谷歌翻译
In this work, we focus on instance-level open vocabulary segmentation, intending to expand a segmenter for instance-wise novel categories without mask annotations. We investigate a simple yet effective framework with the help of image captions, focusing on exploiting thousands of object nouns in captions to discover instances of novel classes. Rather than adopting pretrained caption models or using massive caption datasets with complex pipelines, we propose an end-to-end solution from two aspects: caption grounding and caption generation. In particular, we devise a joint Caption Grounding and Generation (CGG) framework based on a Mask Transformer baseline. The framework has a novel grounding loss that performs explicit and implicit multi-modal feature alignments. We further design a lightweight caption generation head to allow for additional caption supervision. We find that grounding and generation complement each other, significantly enhancing the segmentation performance for novel categories. We conduct extensive experiments on the COCO dataset with two settings: Open Vocabulary Instance Segmentation (OVIS) and Open Set Panoptic Segmentation (OSPS). The results demonstrate the superiority of our CGG framework over previous OVIS methods, achieving a large improvement of 6.8% mAP on novel classes without extra caption data. Our method also achieves over 15% PQ improvements for novel classes on the OSPS benchmark under various settings.
translated by 谷歌翻译
Temporal sentence grounding (TSG) aims to identify the temporal boundary of a specific segment from an untrimmed video by a sentence query. All existing works first utilize a sparse sampling strategy to extract a fixed number of video frames and then conduct multi-modal interactions with query sentence for reasoning. However, we argue that these methods have overlooked two indispensable issues: 1) Boundary-bias: The annotated target segment generally refers to two specific frames as corresponding start and end timestamps. The video downsampling process may lose these two frames and take the adjacent irrelevant frames as new boundaries. 2) Reasoning-bias: Such incorrect new boundary frames also lead to the reasoning bias during frame-query interaction, reducing the generalization ability of model. To alleviate above limitations, in this paper, we propose a novel Siamese Sampling and Reasoning Network (SSRN) for TSG, which introduces a siamese sampling mechanism to generate additional contextual frames to enrich and refine the new boundaries. Specifically, a reasoning strategy is developed to learn the inter-relationship among these frames and generate soft labels on boundaries for more accurate frame-query reasoning. Such mechanism is also able to supplement the absent consecutive visual semantics to the sampled sparse frames for fine-grained activity understanding. Extensive experiments demonstrate the effectiveness of SSRN on three challenging datasets.
translated by 谷歌翻译